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1. Background/Overview 
At SMU, I focus primarily on techniques that apply machine learning (ML) technologies on sensor 
data from personal devices (smartphones and wearables) and Internet-of-Thing (IoT) sensors to 
infer human behavior, activities and events, as they happen in the physical world. Such 
pervasive sense-making enables the emerging vision of “edge machine intelligence”, where such 
ubiquitously deployed devices are increasingly capable of performing in-situ human-like inferences 
from a variety of structured and unstructured (e.g., video, audio) data streams. 
 
In past years, I have focused on first understanding and quantify commonplace daily lifestyle 
activities (e.g., shopping at a retail store, playing a game using a VR device or exercising in a gym), 
and then applying real-time and predictive insights over such activity histories to develop new 
urban sensing paradigms and services (e.g., crowdsourcing). More recently, I have begun to apply 
such analytics to capturing the operations and activities (of both workers and machinery) in 
industrial | factory environments and smart spaces, with a focus on significantly decreasing the 
energy consumption & computing overhead involved in such sensing and analytics.  

 
This work has direct relevance to two emerging domains of information-enhanced operations: 

 Smart Cities, where my work can enable deeper profiling of the individual and collective 
interactions performed by citizens with various municipal/urban services (such as 
transportation, garbage pickup, package delivery, retail shopping, etc.), which in turn can 
lead to improvements in the provision and operation of such services. 

 Industry 4.0, where my work can enabler robust and accurate capture of data, about both 
worker actions/instructions and factory equipment, which in turn can assist real-time 
optimization of manufacturing operations and interactive, natural human-robot 
collaboration. 

 

Within this broad theme, my research interests and accomplishments (chronologically highlighted 
on the next page) can be organized around four technical themes (illustrated in Figure 1): 
A) Mobile & Wearable-based Sensing & Analytics: This research thread focuses on the 

judicious use of wearable and infrastructure-based (IoT) sensors, to derive an understanding of 
the “what, where, when and why”  people do, as part of their daily lifestyles. Over the last few 
years, my interests in this space have migrated to  studying the new opportunities that wearable 
devices, such as smartwatches and virtual reality (VR) displays, provide in capturing fine-
grained individual activity and deeper insights into the conditions of the ambient environment 
(e.g., the queuing levels in a food court or the vibration patterns of factory machinery).   

B) IoT-based Machine Intelligence: As an extension of the theme above, this relatively recent 
body of research looks at way to efficiently execute deep neural network (DNN) pipelines 
(which can provide human-like perception capability) on resource-constrained embedded and 
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IoT devices. Recent interest has focused on ‘collaborative machine inferencing’, where 
multiple such pervasive IoT nodes mutually share hidden-layer state of their own DNN 
pipelines to provide high accuracy but with lower energy consumption and execution latency. 

C) Mobile Crowdsourcing & Other Mobility-Based Urban Services: This is now a relatively 
mature body of work, focused on harnessing the collective patterns of urban mobility and 
behavior to explore new urban services. My current primary interest is on “urban mobile 
crowdsourcing”, where the mobility patterns of a large body of individuals is leveraged upon 
to perform a variety of location-specific tasks (e.g., checking on the cleanliness of a restroom 
or delivering a package), either in campus environments or at city-scale. Recent interests 
include developing mechanisms to satisfy individual-specific privacy preferences or provide 
personalized notifications to enhance greater user participation in such urban crowdsourcing 
scenarios. 

D) Socio-physical Analytics: This is an exciting, recent direction of research that looks to 
combine the insights on physical behavior (often gathered via the techniques of theme “A” 
above) with analytics of content and interactions on social media channels (such as Twitter and 
Instagram). Concretely, my current interests are in (a) analyzing different social sensing feeds 
(e.g., Instagram images and Twitter feeds) jointly to detect, localize and characterize events, 
and thus enhance urban situational understanding; (b) combining mobility data (e.g., from 
buses or taxis) with such social media content to provide deeper policy-level insights into the 
vibrancy of neighborhoods and private businesses and the anticipated transportation demands. 
 

 
 

Figure 1. My Research themes and Activities 
 
Broadly speaking, my work aligns with SMU’s focus on addressing societal challenges related to 
“Advancing Innovation & Technology” & “Managing for Sustainability” areas of 
excellence and is carried out under the umbrella of 2 major research centers: 
 Living Analytics Research Centre (LARC) (www.larc.smu.edu.sg) is an inter-disciplinary 
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center for large-scale “Smart Nation” research that focuses on urban applications and services, 
primarily using online and transactional urban data. 

 Center for Applied Smart-Nation Analytics (CASA) is a center that increases the 
translational impact of our school’s research, by embedding advanced technologies in novel 
“smart nation”-focused public-sector systems and applications. 

 

2. Research Areas   
Here is a more detailed enumeration of my research areas and activities. 
 

2.1. Mobile & Wearable Sensing & Analytics 

This body of work is based on the premise that sensors on personal mobile and wearable 
devices offer us an unprecedented capability to capture and understand an individual’s activities, 
as well as the state of the surrounding world. I’m primarily interested in developing the right 
analytics techniques, that can best fuse the sensor data available across a distributed set of mobile 
devices and backend cloud resources, and that can dramatically reduce the energy overheads for 
such battery-operated devices. The key challenge is to simultaneously support multiple perform 
metrics (e.g., high accuracy and low-energy overheads), while accommodating significant real-
world behavioral diversity. Some of the problems and systems that I’ve worked on in the past 3 
years include:   

 Eating & Shopping analytics. This body of work looks at using wearable devices (such as a 
wrist-worn smartwatch) to gather fine-grained insights about an individual’s commonplace 
daily activities, such as shopping and eating.  For eating analytics, we have built a fully-
automated deployable system called Annapurna [http://is.gd/annapurna] [Sen:15] that 
combines gesture detection using accelerometer and gyroscope sensor data with automatic 
triggering of the smartwatch-embedded camera to capture a high-quality image of the food 
being eaten. I have also used both wearables and lightweight IoT devices (specifically BLE 
beacons) to capture shopper-product interactions in stores. Digitally capturing the shopper’s 
journey within the store can provide valuable information about her preferences and opinions 
about products, something that traditional point-of-sale transactional data cannot. Examples 
include (a) the IRIS platform [Radhakrishnan:16], which used a combination of smartphone 
and smartwatch sensor data to build a shopper’s profile based on inferring a shopper’s micro-
gestural activities; and (b) more recently, the I4S technique ([Sen:18]) that combines multiple 
low-energy BLE beacons with smartwatch sensing to localize a shopper’s interactions with an 
accuracy of  +-40cm.   

 Activity Recognition for Smart Gyms: This body of work has been exploring the use of low-
cost sensors to provide real-time capture and understanding of the exercise activities performed 
by individuals in gyms. In an initial body of work, we utilized a simple sensor device 
(consisting of an accelerometer and a magnetic sensor) mounted on the plates of a weight-stack 
machine, which provides information about the motion dynamics of an individual performing 
weight exercises. Our proposed W8-Scope system [Radhakrishnan:20] applies a set of 
innovative machine learning techniques on such sensor data to infer a variety of exercise-
related attributes, such as the amount of weight lifted, the type of exercise performed and any 
motion-related mistakes during such exercising.  More recently, we have extended our 
investigations to free-weight (dumbbell-based exercises).  We explored [Radhakrishnan:19] 
the use of personal ‘earable’ devices (widely used by gym-goers) in providing personalized, 
quantified insights and feedback. As in-ear sensing by itself is often too weak to pick up 
exercise-driven motion dynamics, we propose a novel, low-cost system that can monitor 
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multiple concurrent users by fusing data from (a) wireless earphones, equipped with inertial 
and physiological sensors and (b) inertial sensors attached to exercise equipment. 

 Passive, Battery-Less Wearable Sensing: One of my long-term goals is to dramatically 
reduce the energy overheads of wearable sensing, such that, in the extreme case, such wearable 
sensors operate purely through energy harvesting and never need to be recharged! As an early 
and exciting example of this, we have developed WiWear [Vu:19], a wearable system that 
includes an accelerometer (to help track natural human gestures) based purely on WiFi energy 
harvesting. The key innovations include (i) the ability to trigger the wearable sensing functions 
only on demand (using a motion harvesting sensor), and (b) transmit dynamically beam-formed 
“power packets” from a multi-antenna AP, such that these packets can deliver significantly 
greater power (over 500 W at distances of 3+m) than currently possible. As another exemplar 
of such passive, battery-less sensing, we have also shown [Jaiswal:18] how an RFID-powered 
accelerometer tag can be used, in conjunction with infrastructural triggers, to capture human 
activities indoors. The future goal of this work is to combine such ultra-low energy 
wearable devices with infrastructural sensing modes (e.g., short range radars) to support 
battery-less pervasive sensing in multi-occupant environments (e.g., offices and gyms). 

 Machine & Industrial Analytics:  This is a new and exciting area of work, where I’ve been 
investigating how a combination of wearable (e.g., smartglasses) and IoT devices (e.g., smart 
LED bulbs or BLE beacons) are innovatively combined to (a) sense fine-grained context (about 
humans, machinery or products) in industrial environments, such as factories and warehouses., 
or (b) enable new forms of subliminal communication in smart spaces (such as shopping malls 
and airport lounges).  As an early example, in collaboration with researchers from TCS, I have 
developed techniques [Roy:18]  to use a low-frame rate camera (one that may be mounted on 
a worker’s protective smartglass), in combination with variable-frequency strobing of overhead 
LED lights, to infer multiple vibration frequencies of an industrial machine. This form of 
optical sensing offers the ability to derive the health of industrial machines using “visual remote 
sensing”, without needing to mount any sensors on the machine itself. In recent, ongoing work, 
I am exploring the use of AI/ML techniques to support more robust “screen-camera 
communication”, where additional information content is embedded in the visual content 
shown on public digital displays (e.g., at shopping malls) such that the information can be 
decoded by the camera sensor on smartphones/wearables while remaining below the threshold 
of human perception. 

 

2.2 Mobile Crowdsourcing 

Over the last few years, mobile crowdsourcing, where a pool of at-will workers performs 
location-specific micro-tasks, has created disruptions in many urban services—including 
transportation (e.g., Uber) and last-mile package delivery (e.g., Amazon Flex). My research here 
is driven by a central question: Can such mobile crowdsourcing services be made more effective 
by better leveraging the predicted movement path and the behavioral preferences of workers? Some 
of my recent work in this area includes:   

 Trajectory-aware task recommendation. All existing mobile crowd-sourcing platforms did 
not personalize task recommendation based on the movement of workers. At best, they allowed 
a worker to search for nearby tasks, close to the worker’s current location. To address this 
situation, we pioneered a task recommendation strategy that maximizes the task completion 
rate while minimizing a worker’s detour from her routine movement trajectory. We showed 
[Chen:14] that our proposed centrally-coordinated recommendation approach, which is an 
interesting variant of the orienteering problem, can result in higher worker productivity (higher 
rewards per unit detour), an overall higher task completion rate, and improved fairness, even 
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when an individual worker’s future movement is uncertain [Chen:15]. More recently, I’ve been 
exploring techniques to extend this paradigm to crowd-sourced pickup-and-delivery tasks (e.g., 
last mile package delivery), where task execution requires a worker to visit both (source, 
destination) locations. In ongoing/future work, we are investigating how the use of limited and 
differentiated information display (showing different workers different sets of such last-mile 
delivery tasks) can help better balance the desire for greater worker choice in task selection 
(which promotes worker satisfaction) and greater overall task execution efficiency (which 
increases a platform’s profitability). 

 Experimental crowdsourcing. Besides developing theoretical techniques for task 
recommendation, my work has also looked at developing empirically-validated, behaviorally-
driven crowdsourcing mechanisms. To support such experimental investigations, we have 
developed and deployed Ta$ker, a campus-based experimental mobile crowdsourcing 
platform, on the SMU campus. Over a 4 year period, Ta$ker has had a loyal pool of around 
1,000 student workers, who have completed over 150,000 reporting-oriented tasks, such as 
“checking on the cleanliness of restrooms” or “reporting on the stock availability in a vending 
machine.” Ta$ker has enabled us to develop and empirically validate a variety of crowd-
sourcing related technologies. For example, in [Kandappu:16], we demonstrated novel 
behavioral aspects, including a preference of workers for task bundles that minimize overall 
detour even if it results in lower per-task payout. Similarly, I have shown [Kandappu:17] that 
allowing workers to dynamically offload some of their tasks to designated friends can 
significantly improve the task completion rate. I have developed mechanisms [Kandappu:18] 
that support privacy-aware crowd-sourcing, by allowing workers to intelligently obfuscate their 
reported location trajectories without requiring any trusted 3rd party. More recently, I have 
shown [Kandappu:20] how appropriate context-aware notifications, reminding people of 
available tasks, can help not just improve the overall task acceptance/execution rates, but also 
shape the spatiotemporal attributes of such task execution. 

These ideas have had both academic and practical impact: we have worked extensively with 
public agencies in Singapore to embed these crowd-sourcing concepts into a new, city-scale 
mobile crowdsourcing application (called HelpBuddy) that supports greater government-
citizen and citizen-citizen engagement. HelpBuddy has been successfully piloted with 8 
different Singapore government agencies and a participant pool of ~4000 resident volunteers. 

2.3 Smart City Analytics 

The third aspect of my research involves socio-physical analytics for urban event detection and 
understanding.  Here, I move beyond studying individual-level activities and behavior to using 
collective observations of such activities and behavior to understand events in urban spaces. The 
scale of these events can vary, from individual public venues (e.g., a college campus) to larger 
geographic areas such as city neighborhoods.  

 Social Media-based Business Survivability and Mobility:   In this area of work, I focus on 
using a combination of social media and urban mobility data to understand the impact of 
people’s movement on neighborhood businesses and amenities (e.g., parking demand). As a 
concrete and innovative example, we collaborated with researchers from University of 
Cambridge to predict the 6-month survivability of individual retail businesses using a 
combination of Foursquare check-in data and aggregated taxi usage data. The key insight 
[D’Silva:18] is that social mobility data can be used to uncover features characterizing both the 
competitive profile of an individual business and the neighborhood in which it operates. We 
showed that we can use such features to predict such business survivability with an AUC (area-
under-curve) value of 0.86.  In follow-on work, we tried to systematically understand how land 
use impacts crowd flow and transportation demand to different areas of the city, and in turn, 
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how the influx of people to an area (or lack thereof) can influence the viability of business 
entities in that area. In preliminary work, we applied unsupervised learning techniques to show 
how the temporal demand pattern for carparks was correlated to the land-use mix (the nature 
of local businesses in a particular area). Transforming the problem of predicting carpark 
temporal demand as a multi-class classification task, we showed [Jayarajah:18] that we can 
achieve of AUC of 0.84 by exploiting features related to land-use mix extracted from social 
media data. Our work lays the foundation for using such mobility and social media data to study 
other aspects of a neighborhood and its constituent businesses and residents.  

 Public Transport Mobility Anomaly & Prediction:  My work leverages on the increased 
availability of digitally captured data on individual commuting behavior (e.g., data of smart 
card tap-ins and tap-outs on buses and trains) to obtain improved predictive insights on both 
collective patterns of urban mobility and the neighborhood events that often underpin such 
behavior. In a recent work we demonstrate the power of applying real-time, predictive analytics 
on the smart-card generated trip data of millions of public bus commuters in Singapore, to 
create two novel and “live” smart city services. Our work [Meeghapola:19a] combines two 
aspects of urban mobility: (a) conformity: which reflects the predictability in the aggregated 
flow of commuters along bus routes, and (b) regularity: which captures the repeated trip 
patterns of each individual commuter. The resulting BusScope platform provides O(mins) 
lookahead into the number of disembarking passengers at neighborhood bus stops; it achieves 
over 85% accuracy in predicting such disembarkations at each bus stop. By moving driverless 
vehicles proactively to match this predicted demand, we can reduce wait times for 
disembarking passengers by over 75%. Similarly, by using outlier measures of currently 
operating buses, we can detect and spatiotemporally localize dynamic urban events, as much 
as 1.5 hours in advance, with a localization error of 450 meters. While individual-specific 
transaction records (such as smart card (tap-in, tap-out) data or taxi trip records) hold a wealth 
of information, these are often private data available only to the service provider (e.g., taxicab 
operator). In parallel work, we have explored the utility in harnessing publicly available, albeit 
noisy, transportation datasets, such as noisy “Estimated Time of Arrival" (ETA) records 
(commonly available to commuters through transit Apps or electronic signages). In 
[Meeghapola:19b], we demonstrate how to develop a clustering-cum-deduplication mechanism 
to accurately reconstruct the transit times of individual bus instances at different bus stops from 
such coarse-grained, anonymized bus ETA records, achieving precision/recall values of 
inferring such arrivals with an error of less than +-1 minute. As a practical application, we show 
how such accurate reconstruction can help provide more accurate predictions of future bus 
arrivals (with an error of less than +-20 seconds) compared to traditional offline estimation 
techniques based on historical records. 

 Social Sensing for Urban Event Understanding:  This work tries to discover unexpected or 
latent events in public venues, based on the individual and collective patterns of movement a 
at these locations and content posted on social media channels, such as Twitter or Instagram, 
to better detect urban events. To detect such events, I apply information-processing tools on 
both the metadata (e.g., the location tag of an Instagram post, or the total number of Tweets 
with a specific hashtag) and the data/content (e.g., the objects in an Instagram image). A recent 
and concrete exploration of such multi-modal sensing is [Jayarajah:16b], where we show how 
to consider a larger urban event, such as a marathon, and identify and localize micro-events 
(start and finish sequences) based on Instagram posts. 

2.4 Collaborative Machine Intelligence 

This is my newest, most-recently initiated research thread. The goal of this work, broadly, is to 
enable ubiquitous intelligence in a future world of connected sensing and computing devices, 
seamlessly embedded in our surroundings. In my vision, embedded IoT devices (or “things”, such 



 

 7

 

as assistive robots or agents) will be capable of human-like interactions with their environment, 
including speech recognition, vision, and gesture understanding. These capabilities, articulated in 
our vision of machine intelligence being a composable service for pervasive applications [Yao:19], 
will bring about such features as verbal device control, (soft) user authentication, and gesture-based 
human machine communication. The key challenge, of course, is to somehow simplify the 
execution of complex Deep Neural Network (DNN)-based inferencing pipelines (which represent 
the state-of-the-art in machine-based perception) so that they can adhere to the resource constraints 
of embedded devices. 
 Collaborative Networked Video Analytics:  Many IoT networks involve the deployment of 

resource-constrained sensors with varying degrees of redundancy/overlap (i.e., their data 
streams possess significant spatiotemporal correlation). To tackle the performance challenges, 
we advocate the vision of Collaborative IoT Intelligence, where the inferencing pipelines of 
multiple individual devices share features and “internal state” in real time with one another, 
allowing the devices to collectively both overcome their individual processing bottlenecks and 
improve their sense-making fidelity. In current work, we investigate such collaborative 
intelligence for the specific case of a multi-camera, campus-scale video sensing network, where 
the cameras are tasked with executing people counting algorithms to collectively provide a 
“live” view of the occupancy levels in different parts of the campus. We have developed 
[Weerakoon:19] two different & initial approaches for such collaborative analytics, one called 
CNMS which refines the statistical output from the underlying DNNs and the other called 
CSSD which develops entirely new DNN models to take advantage of such collaboration. 
Using a benchmark video monitoring dataset, we have shown [Weerakoon] that collaborative 
inferencing results in significantly higher accuracy (75.5% for CNMS and 82% for CSSD), 
compared to a non-cooperative baseline value of 68.03% achieved by the state-of-the-art SSD 
object detection DNN. In ongoing work, we have been developing techniques to reduce the 
execution latency and the network overheads of sharing such ‘state’ across a wireless 
infrastructure. Very specifically, we have shown how using selected feature maps (fMaps) from 
the early convolutional layers of the DNN pipeline can be used to (a) reduce the total processing 
time for each image frame by over 90%, thereby allowing such collaborative techniques to 
operate on high-frame rate (30fps or higher) video streams and (b) extract only a small set of 
features that need to be shared with other peer camera sensors, thereby achieving a significant 
reduction in the communication overheads of such collaborating cameras.  

 Multi-Modal Human-Robot Interaction: Advances in sensing, machine learning and 
robotics are ushering in new forms of human-agent interaction that will transform multiple 
industries and businesses. Today’s state-of-the-art human-agent interactions (such as text-
based ‘chatbots’ or voice-based ‘home assistants’) are typically unimodal, utilizing a single 
sensing stream. I predict that increasing penetration of embedded sensors in consumer devices 
will soon permit significantly richer forms of multi-modal interactions between humans and 
agents, in real-world venues such as shopping malls, office receptions and manufacturing 
floors. For example, a worker on a factor floor should be able to instruct a robot to pick up a 
specific part, via natural interaction-based inputs (such as voice, vision and gestures). To 
achieve this, we will need advances in two dimensions: (a) improved multi-modal ML models 
that combine inputs from multiple perceptual sensor streams, and (b) reducing the 
computational complexity of such ML inferencing pipelines to make them executable on 
resource-contained devices. In ongoing, early work, we have demonstrated the possibility of 
using pointing gestures, a naturally-generated additional input modality, to improve the 
multimodal comprehension accuracy of human instructions to robotic agents for collaborative 
tasks. We have developed M2Gestic, a system that combines neural-based text parsing with a 
novel knowledge-graph traversal mechanism, over a multi-modal input of vision, natural 
language text and pointing. Via multiple studies related to a benchmark table top manipulation 
task, we show that (a) M2Gestic can achieve close-to-human performance in reasoning over 
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unambiguous verbal instructions, and (b) utilize pointing input (even with its inherent location 
uncertainty) to achieve a significant (∼ 30%) accuracy improvement when verbal instructions 
are ambiguous. In future work, we shall be looking at ways to use collaboration across the 
different ML pipelines (one for each input modality) to dramatically improve the accuracy-vs-
latency tradeoff for such machine inferencing tasks. 

 

3. Future Research Directions and Interests 

In the next 1-2 years, I will continue my broad focus on socio-physical analytics, especially 
focusing on the ability to combine wearable & infrastructural IoT data to obtain a deeper 
understanding of human activities and interactions in a variety of spaces with dramatically reduced 
energy overheads. I find three directions of work particularly promising. 

 Battery-free Wearable + IoT systems & sensing. In recent years, there has been 
significant interest in device-free localization and activity recognition research, which uses 
technologies such as Wi-Fi and light to capture human movement. While promising, I 
believe that significantly better accuracy and energy-efficiency can be achieved by 
combining such device-free techniques with intermittent battery-free wearable sensors.  
Achieving this vision will require innovative designs of both embedded sensing platforms 
and sensor data analytics at the edge. This approach is likely to be useful for industrial IoT 
(Industry 4.0) technologies, and will likely involve the fusion of new forms of passive 
sensing technologies (e.g., indoor radar, 60 GHz WiFi) and ultra-low power wearable 
platforms.  I have also been investigating the use of virtual-reality (VR) and augmented 
reality (AR) wearables for novel systems and applications. Early examples include the use 
of video+image cues, overlaid on an AR device, for infrastructure-independent wayfinding 
[Roy:17], and the combination of real-world sensing and VR devices to support 
experiential understanding of App usage under various impairments [Kim:18]. 

 Collaborative Edge Inferencing for Smart City Operations. Cities continue to roll out 
smart city infrastructures, with tens of millions of heterogeneous IoT devices, to support 
applications, such as dynamic bus route optimization and adaptive street lighting. To 
provide real-time services, and mitigate the backhaul data demands, it is important to 
develop “edge intelligence”—i.e., embed various types of inferencing capabilities on the 
resource-limited edge devices (e.g., cameras mounted on lampposts). To overcome the 
resulting latency and throughput bottlenecks, I shall develop an enhanced “cognitive edge” 
framework, where devices collaborate and share the intermediate state of machine learning 
pipelines with one another to improve system performance and resiliency to faults, while 
seeking to minimize the network bandwidth needed to support such real-time collaboration. 
These collaborative principles should also prove relevant to my work on human-
robot/agent interaction, so as to enhance the agent’s ability to perform sophisticated, 
energy-efficient comprehension of human instructions. 

 Socio-physical urban analytics. I remain excited by the possibility of combining personal 
sensing (via mobile devices) with additional data from (1) urban informatics portals or (2) 
public social media sources. At present I am using urban transportation-related data sources 
(bus movement, parking garage occupancy, etc.) available from the Singapore 
Government’s data.gov.sg portal, in combination with social media feeds (e.g., Twitter, 
Facebook and Foursquare) to profile the usage/viability of individual establishments, 
identify the impact of such usage (driven by overall land use) on aggregated transportation 
demand and create new spatiotemporal models of “retail competition”. 
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